twitter ВКонтакте facebook
Автор: Группа студентов Версия для печати

Медные сплавы

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30-40 кгс/мм^2 у сплавов и 25-29 кгс/мм2 у технически чистой меди (табл. 35-39) .

Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм2 ниже, чем у стали) .

Основное преимущество медных сплавов - низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения) , сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.

Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, a следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных.

Марки медных сплавов

Марки обозначаются следующим образом.

Первые буквы в марке означают: Л - латунь и Бр. - бронза.

Буквы, следующие за буквой Л в латуни или Бр. В бронзе, означают: А - алюминий, Б - бериллий, Ж - железо, К - кремний, Мц - марганец, Н - никель, О - олово, С свинец, Ц - цинк, Ф. - фосфор.

Цифры, помещенные после буквы, указывают среднее процентное содержание элементов. Порядок расположения цифр, принятый для латуней, отличается от порядка, принятого для бронз.

В марках латуни первые две цифры (после буквы) указывают содержание основного компонента - меди. Остальные цифры, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов.

Эти цифры расположены в том же порядке, как и буквы, указывающие присутствие в сплаве того или иного элемента. Таким образом содержание цинка в наименовании марки латуни не указывается и определяется по разности. Например, Л86 означает латунь с 68% Cu (в среднем) и не имеющую других легирующих элементов, кроме цинка; его содержание составляет (по разности) 32%. ЛАЖ 60-1-1 означает латунь с 60% Cu, легированную алюминием (А) в количестве 1%, с железом (Ж) в количестве 3% и марганцем (Мц) в количестве 1%. Содержание цинка (в среднем) определяется вычетом из 100% суммы процентов содержания меди, алюминия, железа и марганца.

В марках бронзы (как и в сталях) содержание основного компонента меди - не указывается, а определяется по разности. Цифры после букв, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов; цифры расположенные в том же порядке, как и буквы, указывающие на легирование бронзы тем или иным компонентом.

Например, Бр. ОЦ10-2 означает бронзу с содержанием олова (О) ~ 4% и цинка (Ц) ~ 3%. Содержание меди определяется по разности (из 100%) . Бр. АЖНЮ-4-4 означает бронзу с 10% Al, 4% Fe и 4% Ni (и 82% Cu) . Бр. КМц3-1 означает бронзу с 3% Si, и 1% Mn (и 96% Cu) .

1. Медно-цинковые сплавы. Латуни (табл. 35) .

По химическому составу различают латуни простые и сложные, а по структуре - однофазные и двухфазные.

Простые латуни легируются одним компонентом: цинком.

Однофазные простые латуни имеют высокую пластичность; она наибольшая у латуней с 30-32% цинка (латуни Л70, Л67) . Латуни с более низким содержанием цинка (томпаки и полутомпаки) уступают латуням Л68 и Л70 в пластичности, но превосходят их в электро- и теплопроводности. Они поставляются в прокате и поковках.

Двухфазные простые латуни имеют хорошие ковкость (но главным образом при нагреве) и повышенные литейные свойства и используются не только в виде проката, но и в отливках. Пластичность их ниже чем у однофазных латуней, а прочность и износостойкость выше за счет влияния более твердых частиц второй фазы.

Прочность простых латуней 30-35 кгс/мм^2 при однофазной структуре и 40-45 кгс/мм^2 при двухфазной. Прочность однофазной латуни может быть значительно повышена холодной пластической деформацией. Эти латуни имеют достаточную стойкость в атмосфере воды и пара (при условии снятия напряжений, создаваемых холодной деформацией) .

2. Оловянные бронзы (табл. 36) .

Однофазные и двухфазные бронзы превосходят латуни в прочности и сопротивлении коррозии (особенно в морской воде) .

Однофазные бронзы в катаном состоянии, особенно после значительной холодной пластической деформации, имеют повышенные прочностные и упругие свойства (δ>= 40 кгс/мм^2) .

Для двухфазных бронз характерна более высокая износостойкость.

Важное преимущество двухфазных оловянистых бронз - высокие литейные свойства; они получают при литье наиболее низкий коэффициент усадки по сравнению с другими металлами, в том числе чугунами. Оловянные бронзы применяют для литых деталей сложной формы. Однако для арматуры котлов и подобных деталей они используются лишь в случае небольших давлений пара.

Недостаток отливок из оловянных бронз - их значительная микропористость.

Поэтому для работы при повышенных давлениях пара они все больше заменяются алюминиевыми бронзами.

Из-за высокой стоимости олова чаще используют бронзы, в которых часть олова заменена цинком (или свинцом) .

3. Алюминиевые бронзы (табл. 37) .

Эти бронзы (однофазные и двухфазные) все более широко заменяют латуни и оловянные бронзы.

Однофазные бронзы в группе медных сплавов имеют наибольшую пластичность (δ до 60%) . Их используют для листов (в том числе небольшой толщины) и штамповки со значительной деформацией. После сильной холодной пластической деформации достигаются повышенные прочность и упругость.

Двухфазные бронзы подвергают горячей деформации или применяют в виде отливок. У алюминиевых бронз литейные свойства (жидкотекучесть) ниже, чем у оловянных; коэффициент усадки больше, но они не образуют пористости, что обеспечивает получение более плотных отливок. Литейные свойства улучшаются введением в указанные бронзы небольших количеств фосфора. Бронзы в отливках используют, в частности, для котельной арматуры сравнительно простой формы, но работающей при повышенных напряжениях.

Кроме того, алюминиевые двухфазные бронзы, имеют более высокие прочностные свойства, чем латуни и оловянные бронзы. У сложных алюминиевых бронз, содержащих никель и железо, прочность составляет 55-60 кгс/мм^2.

Все алюминиевые бронзы, как и оловянные, хорошо устойчивы против коррозии в морской воде и во влажной тропической атмосфере.

Алюминиевые бронзы используют в судостроении, авиации, и т.д. В виде лент, листов, проволоки их применяют для упругих элементов, в частности для токоведущих пружин.

4. Кремнистые бронзы (табл. 38) Применение кремнистых бронз ограниченное. Используются однофазные бронзы как более пластичные. Они превосходят алюминиевые бронзы и латуни в прочности и стойкости в щелочных (в том числе сточных) средах.

Эти бронзы применяют для арматуры и труб, работающих в указанных средах.

Кремнистые бронзы, дополнительно легированные марганцем, в результате сильной холодной деформации приобретают повышенные прочность и упругость и в виде ленты или проволоки используются для различных упругих злементов.

5. Бериллиевые бронзы.

Бериллиевые бронзы сочетают очень высокую прочность (σ до 120 кгс/мм ^2) и коррозионную стойкость с повышенной электропроводностью.

Однако эти бронзы из-за высокой стоимости бериллия используют лишь для особо ответственных в изделиях небольшого сечения в виде лент, проволоки для пружин, мембран, сильфонов и контактах в электрических машинах, аппаратах и приборах.

Указанные свойства бериллиевые бронзы после закалки и старения, т.к. растворимость бериллия в меди уменьшается с понижением температуры.

Выделение при старении частиц химического соединения CuBe повышает прочность и уменьшает концентрацию бериллия в растворе меди.

Медные сплавы. Оловянные бронзы.

марка

химический состав

назначение

Sn

P

Zn

Ni

Pb

 

обрабатываемые давлением (однофазные) по ГОСТ 5017–49

 

Бр. ОФ6,5–0,15  

6–7

0,1–0,25

?

?

?

Ленты, сетки в аппаратостроении, бумажной пром.. Мембраны, пружины, детали работающие на трение.

 

Бр. ОЦ4–3

3,5

?

2,7–3,3

?

?

 

литейные (двухфазные) по ТУ

 

Бр. ОЦ10–2

9–11

?

2–4

?

?

шестерни, втулки, подшипники.

Бр. ОФ10–1

9–11

0,8–0,12

?

?

?

То же, пластичность выше.

Бр. ОНС11–4–3

?

?

?

4

3

То же, при нагреве. Втулки клапанов.

Алюминиевые бронзы (по ГОСТ 18175–72)

марка

химический состав

назначение

Al

Fe

Ni

 

высокой пластичности (однофазные)

 

Бр. А5

4–6

?

?

Ленты, полосы, для пружин.

 

высокой прочности (двухфазные)

 

Бр. АЖ 9–4

8–10

2–4

?

Шестерни, втулки, арматура, в. т. ч для морской воды.

Бр. АЖН10–4–4

9,5–11

3,5–5,5

3,5–5,5

То же, при больших давлениях и трении.

Кремнистые бронзы (по ГОСТ 18175–72)

марка

химический состав

назначение

Si

Mn

Ni

Бр. КМц 3–1

2,75–3,5

1–1,5

?

Пружины, трубы, втулки в судостроении, авиации, химической промышленности.

Бр. КН 1–3

0,6–1,1

0,1–0,4

2,4–3,4

Втулки, клапаны, болты, и др. детали для работы в морской и сточных водах.

Бериллиевые бронзы (по ГОСТ 18175–72)

марка

химический состав

назначение

Be

Ni

Ti

Mg

Бр. Б2

1,8–2,1

0,2–0,5

?

?

    Высокопрочные и токоведущие пружины, мембраны, сильфоны.

Бр. БНТ1,7

1,6–1,85

0,2–0,4

0,1–0,25

?

Бр. БНТ1,9

1,85–2,1

0,2–0,4

0,1–0,25

?

Бр. БНТ1,9Mr

1,85–2,1

0,2–0,4

0,1–0,25

0,07–0,13

Латуни

марка

химический состав

назначение

Cu

Al

Pb

Sn

другие

Простые латуни

 

Пластичные (однофазные) , деформируемые в холодном и горячем состоянии

 

Л96 (томпак)

95,0–97,0

?

?

?

?

Трубки радиаторные, листы, ленты.

Л80 (полутомпак)

79,0–81,0

?

?

?

?

Трубки, лента, проволока.

Л68

67,0–70,0

?

?

?

?

Листы, ленты для глубокой вытяжки.

 

Меньшей пластичности (двухфазные) , деформируемые в горячем состоянии и литейные.

 

ЛС59–1

57,0–60,0

?

0,8–1,9

?

?

Листы, трубы, литье; хорошая обрабатываемость резанием.

Сложные латуни

 

Обрабатываемые давлением (однофазные)

 

ЛА 77–2

76,0–79,0

1,7–2,5

?

?

?

Трубы в морском и общем машиностроении

ЛО70–1

69,9–71,0

?

?

1–1,5

?

Трубы подогревателей

 

Литейные (двухфазные) по ГОСТ 17711–72

 

ЛА 67–2,5

66–68

2–3

<=1,0

?

?

Отливки в морском и общем машиностроении

Сложные латуни повышенной прочности и стойкости против коррозии

ЛАН 59–3–2

57,0–60,0

2,5–3,5

?

?

2–3 Ni

Трубы, тяжело нагруженные детали в моторо- и судостроении

ЛАЖ 60–1–1

58,0–61,0

0,75–1,5

<=0,4

?

0,8–1,5 Fe

 

Литейные (двухфазные) по ГОСТ 17711–72

 

ЛМцЖ 55–3–1

53–58

?

<=0,5

1,3–4,5

0,5–1,5 Fe 4–3 Mn  

Массивное литье в судосроении.

ЛмцОС 58–2–2–2

57–60

?

0,5–2,5

1,5–2,5

1,5–2,5 Mn

Шестерни, зубчатые колеса

 

Не подходит?  Заказать  реферат нашим авторам?

     Вы также можете добавить свой реферат

Реферат прочитали 750 чел.